Viscosity measurement at high pressures

Peter Christiansen

DTU Mechanical Engineering

Department of Mechanical Engineering

What is viscosity?

Relationship between shear strain rate $\dot{\gamma}$ and shear stress τ

 η is typically a function of both shear rate, pressure, temperature and fluid chemistry

Viscosity measurement

Capillary viscometer

$$\eta=k\rho t$$

k is the capillary constant measured by a reference liquid

 ρ is the density of the fluid

Temperature can be varied but not pressure or shear rate

Viscosity measurement

Cone on plate viscometer

$$\eta = kM/\omega$$

k is the viscometer constant measured by a reference liquid

M is shear torque

 $\boldsymbol{\omega}$ is the angular velocity

Temperature and shear rate can be varied but not pressure

Viscosity measurement

Falling ball viscometer

$$\eta = 2r^{2} (\rho_{s} - \rho_{f}) gF/9u$$
g is the gravitational constant
u is the velocity of the sphere
 ρ_{s} is the density of the sphere
 ρ_{f} is the density of the fluid
$$F = 1 - 2.104 (d/D) + 2.09 (d/D)^{3} - 0.9 (d/D)^{5}$$

$$d = 2r$$

Temperature and pressure can be varied but not shear rate

DTU

New viscometer concept

Temperature and shear rate can be varied but not pressure

6 DTU Mechanical Engineering

Viscosity measurement at high pressures 20-10-2015

DTU

New viscometer concept

- Dimensions?
- Torque?
- Material?

Temperature, shear rate and pressure can be varied

Torque estimation based on Barus equation

Possibility to encounter differences in torque during experiments.

Torque estimation based on maximum shear strength of oil

 $\begin{aligned} \tau_L &= \tau_o + ap \quad M \approx 2\pi h r^2 \tau_L \\ \tau_o &\approx 15 M P a \\ a &\approx 0.05 \end{aligned}$

Dimensioning torque: 40NM. Number with some uncertainty.

9 DTU Mechanical Engineering

Viscosity measurement at high pressures 20-10-2015

DTU

Strain gauge from HBM

K WAY	Types available at short notice		Variants ⁽¹⁾	No- minal resis- tance	Dimensions (mm/inch)			inch)	Max. perm. effective bridge ex. voltage	Solder terminals
Shear/torsion half bridge Temperature response matched to customer's choice see page 16					Mea g	suring rid	Mea grid	suring		ot required
Illustrations show actual size	Steel	Aluminum	Other	Ω	а	b1 b2	c	đ	v	
			K-XY4x-3/120 K-XY4x-6/120 K-XY4x-3/350 K-XY4x-6/350 K-XY4x-6/700 K-XY4x-6/700	120 120 350 350 700 700	3 0.118 6 0.236 0.118 6 0.236 6 0.236	3 5. 0.12 0.2 6 10, 0.24 0.4 4.2 5. 0.17 0.2 6 10 0 0.24 0.3 4.2 5. 0.17 0.2 6 0.1 0.2 0.24 0.3	4 11 10.433 2 16 0 0.630 5 11 12 0.433 9 16 9 0.630 5 11 2 0.433 9 16 9 0.630	8 0.315 12.2 0.480 0.315 12.2 0.490 8 0.315 12.2 0.490	5 9.5 9.5 16 13.5 23	
6 (0.236)										

(1) Variants: Minimum order quantity: 3 packages (*) Types are only available with matching to aluminum, ferritic or austenitic steel

Strains < 0.001 and uniform

Contents per package: 5 pcs.

DTU

Design of strain gauge setup

LS-DYNA simulation

Sealing between shaft and chamber

Bridgman seal. 44° or 46°?

Bridgman seal

LS-DYNA simulation

Bridgman seal

46° gives larger closure pressure

Possible material for construction

Uddeholm suggests to immerse possible tool steel candidates for construction into relevant oils for corrosion testing. Sverker 21 after immersion into TDN81 (chlorinated paraffin oil) for 14 days.

Future challenges

- Chamber pressurization
- Wires from data aquisition inside chamber to outside

Questions?