Compressibility of liquid lubricants at high pressures

Mohd Hafis Sulaiman

Introduction

- When the pressure between surfaces increases, a confined lubricant in closed pockets will be a factor determining possible hydrodynamic and hydrostatic lubrication mechanism.
- How is the lubricant carry the load at different pressures?
- Are they any difference between a lubricant with and without boundary lubrication as the oil pressure increases in the pockets?
- Increased knowledge about the lubricant compressibility is required in order to design tailored surfaces for metal forming.

Introduction

- Bulk modulus is a property that measures the compressibility of a fluid.
 - Bulk modulus
 - The product of fluid volume at any specified pressure. dP

High Pressure Equipment

• Built-in high pressure equipment at DTU-MEK.

Pressure limit check (by Numerical simulation)

DTU Mechanical Engineering Department of Mechanical Engineering

Material properties:

- Punches: Unimax, E = 213 GPa.
- Punch cap: AISI 316, *E* = 193 GPa.
- Prestressed die container: Vanadis 4E, *E* = 206 GPa

Lubricant properties:

Bulk modulus:

> K = 1500 MPa.

 $\succ K = 2200$ MPa.

Pressure limit check (by Numerical simulation)

• No marked expansion on the die and the punches.

Fringe Levels 1.118e+03 1.006e+03 8.946e+02 7.828e+02 6.710e+02 5.592e+02 4.473e+02 3.355e+02 2.237e+02 1.118e+02 0.000e+00

Pressure limit check (by Numerical simulation)

Bridgman seal check (by Numerical simulation)

DTU Mechanical Engineering

Department of Mechanical Engineering

Bridgman seal check (by Numerical simulation)

• Modified design of ring 1

Test Lubricants

- There are 3 types:
 - 1) Water (for verification with the published data).
 - 2) Plain mineral oils (Thick and thin version).
 - 3) Good boundary lubricants (Thick and thin version).

Oil type	Product name	Kinematic Viscosity η _v @ 40°C [cSt]
-	Water	0.658
Naphthenic plain mineral oil	CR5	660
Plain mineral oil*	CR5-Sun 60	60
Mineral oil with additives	Rhenus LA 722086	800
Mineral oil with additives	Rhenus LA 722083	300
Chlorinated paraffin oil	TDN81	150

*50 wt. % mixture oil – Houghton Plunger CR5 (η =660 cSt) and Sunoco Sun 60 (η =10 cSt).

Verification of the built-in equipment at DTU-MEK

• Bulk modulus of water was compared with the established result.

• Bulk modulus at different pressures.

• The boundary lubricants has a marked influence on compressibility when compared to the thin plain mineral oil.

• Meanwhile, the thick plain mineral oil shown a good compressibility in comparison to that of the boundary lubricant (medium viscous version).

• A light damage on the seals caused by testing of plain mineral oil (a thin oil version).

• Heavy damage on the punch cap and the seals caused by testing of plain mineral oil (a thick oil version).

Summary

- The compressibility test results shown a similar trend when evaluating the same oil types on textured tool surfaces in strip reduction testing.
- The compressibility of the lubricant may be an influential factor in determining possible hydrodynamic and hydrostatic lubrication mechanism.
- The influence of the lubricant compressibility need to take into account for a future work in modelling trapped lubricant behavior in metal forming operation.